UNIVERSAL HIGH BRIGHTNESS LED DRIVER

GENERAL DESCRIPTION

The BSC74K9910B is a PWM high efficiency control LED driver IC. The device is manufactured using a rugged high voltage junction isolated process that can withstand an input voltage surge of up to 500V. It allows efficient operation of High Brightness (HB) LEDs from $10V_{DC}$ up to $500V_{DC}$ Voltage Source.

The switching frequency to control the external MOSFET can be selected up to 300KHz by using a single resistor.

Output current to an LED string can be programmed to any value between zero and upto the maximum by applying an external control voltage at the linear dimming control input of the BSC74K9910B.

The device integrates a low-frequency PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz.

FEATURES

- > 90% efficiency
- Wide input range 10V to 500V
- Constant current LED driver
- Applications from a few mA to more than 1A
- LED string from one to hundreds of diodes
- PWM low frequency dimming via enable pin
- Input voltage surge rating up to 500V

APPLICATIONS

AC/DC or DC/DC LED Driver Applications RGB Backlighting LED Driver Back Lighting of Flat Panel Displays General Purpose Constant Current Source

PIN CONFIGURATION

PIN DESCRIPTION

No.	Pin	Description			
1	VIN	Input Voltage of a 10.0 – 500V linear regulator			
2	CS	CS This pin is the current sense pin used to sense the FET curre by an external sense resistor. When the voltage on this pin exceeds the lower of either the internal 250mV or the voltage the LD pin, the GATE output goes low.			
3	GND	Ground			
4	GATE	This pin is the output GATE driver for THE external N-channel power MOSFET.			
5	PWMD	This is the PWM dimming input of the IC. When this pin is pulled to GND, the GATE driver is turned off. When the pin is pulled high, the GATE driver operates normally.			
6	V _{DD}	Power supply pin for all internal circuits, It must be bypassed with a low ESR capacitor to GND ($\ge 0.1 \mu$ F).			
7	LD	This pin is the linear dimming input and sets the current sense threshold as long as the voltage at the pin is less than 250mV (typ).			
8	RT	This pin sets the oscillator frequency. When a resistor is connected between RT and GND, the HV9910B operates in constant frequency mode. When the resistor is connected between RT and GATE, the IC operates in constant off-time mode.			

ABSOLUTE MAXIMUM RATINGS¹

Parameter	Symbol	Ratings	Unit
Maximum Supply Voltage	V _{IN}	-0.5 to 500	V
Maximum Voltage on Pin CS	Vcs	-0.3 to V _{DD} + 0.3	V
Maximum Voltage on Pin LD and PWMD	Vld, Vpwmd	-0.3 to V _{DD} - 0.3	V
Maximum Voltage on Pin GATE	V _{GATE}	-0.3 to V _{DD} + 0.3	V
Operating Temperature Range		-40 to +85	°C
Maximum junction temperature ²	TJ	+125	°C
Thermal Resistance TO-252 5L	θја	95	°C/W
Storage Junction Temperature	Tstg	-65 to 150	°C
Lead Temperature (Soldering 10 secondes)		260	°C

Note 1: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified: $T_A = 25^{\circ}C$)

Parameter	Condition	Symbol	Value			Unit
	Condition	Symbol	Min	Тур	Max	Unit
Input DC supply voltage range	DC Input Voltage	VINDC	10		500	V
Shut-Down mode supply current	Pin PWMD to GND, $V_{IN} = 8V$	II _{NSD}	0.5		1	mA
Internally regulated voltage	V _{IN} = 10 to 500V, I _{DD} (ext)=0, pin GATE is open	Vdd	7	7.5	8	V
Maximum V _{DD} voltage	When an external voltage applied to pin VDD	Vddmax			10	v
V _{DD} current available for external circuitry	$V_{IN} = 10 - 100 V$	I _{DDMAX}			1	mA
V _{DD} under voltage lockout threshold	V _{IN} rising	UVLO	6.45	6.7	6.95	v
V _{DD} under voltage lockout hysteresis	V _{IN} falling	ΔUVLO		500		mV
Pin PWMD input low voltage	V _{IN} = 10–100V	V _{PWMD} (Io)			1	V
Pin PWMD input high voltage	$V_{IN} = 10 - 100 V$	V _{PWMD} (ligh)	2.4			V
Pin PWMD pull-down resistance	Pin PWMD = 5V	Rpwmd	50	100	150	Ω
Current sense pull-in threshold	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{cs} (hi)	243.5	250	257.5	mV
GATE high output voltage	Iout = 10mA	V _{GATE} (hi)	V _{DD} -0.3		VDD	mV
GATE low output voltage	I _{OUT} = -10mA	$V_{GATE}(low)$	0		0.3	mV
Oscillator frequency	R _T = 1.00MΩ	fosc	20	25	30	kHz
	$R_T = 226 K\Omega$		80	100	120	
Duty Cycle	GATE, CS to GND.	D _{MAX} hf			100	%
Linear Dimming pin voltage range	$T_A \leq 85^{\circ}C, \ V_{IN} = 12V$	V _{LD}	0		250	mV
Current sense blanking interval	$\begin{array}{l} V_{\text{CS}} = \ 0.55 V_{\text{LD}}, \ V_{\text{LD}} = \\ V_{\text{DD}} \end{array}$	t BLANK	150	215	280	ns
Delay from CS trip to GATE lo	$\label{eq:VIN} \begin{array}{l} V_{IN} = 12V, \ V_{LD} = 0.15, \\ V_{CS} = 0 \ to \ 0.22V \ after \\ t_{BLANK} \end{array}$	tdelay			300	ns
GATE output rise time	$C_{GATE} = 500 pF$	t _{RISE}	30		50	ns
GATE output fall time	C _{GATE} = 500pF	tfall	30		50	ns
Thermal Shutdown Temperature		T _{TST}		150		٥C
Thermal Shutdown Hysteresis		Тнузт		40		°C

FUNCTIONAL BLOCK DIARGAM

TYPICAL APPLICATION CIRCUIT

Figure 2 Typical Application Circuit

DEVICE MARKING

- G: Green Product
- A: Assembly / Test site code
- Y: Year
- WW: Week

PRODUCT ORDERING INFORMATION

RCC	
DOU	

<u>74K</u>

<u>9910B</u>

BRAVE Semiconductor Corporation LED Driver Product Family Circuit Type

Device Package S8: SOP 8 D8: DIP 8

Shipping Type R: Tape & Reel T: Tube

G: Green

G

Note:

- Green products:
 - Lead-free (RoHS compliant)
 - Halogen free (Br or CI does not exceed 900ppm by weight in homogeneous material and total of Br and CI does not exceed 1500ppm by weight)

ORDERING INFORMATION Industrial Range: -40°C To +125°C

Order Part No.	Package	QTY
BSC74K9910BD8TG	DIP-8	60 Unit / Tube
BSC74K9910BS8TG	SOP-8	100 Units / Tube
BSC74K9910BS8RG	SOP-8	2500 Units / Reel

Copyright © 2021 Brave Semiconductor Corporation. All rights reserved. Brave Semiconductor Corporation reserves the right to make changes to this specification and its products at any time without notice. Brave Semiconductor Corporation assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Brave Semiconductor Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.

PACKAGE INFORMATION

REVISION HISTORY

Revision	Detail Information	Date
А	Initial Release	2021.09.03

Copyright $\ensuremath{\mathbb{C}}$ 2021 Brave Semiconductor Corporation. All Rights Reserved.

Information in this document is subject to change without prior notice.

Brave Semiconductor name and the Brave Semiconductor logo are trademarks or registered trademarks of Brave Semiconductor Corporation.

Other brands, names, trademarks or registered trademarks may be claimed as the property of their respective owners.